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GIEC Changement climatique, 2013. 
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Forecast primary energy mix 

Introduction

Natural gas is a keystone of energy transition (blue hydrogen, power, industry, …)  

COP 26 pledges
NetZero scenario 

26 % of the 
global demand

23 % of the 
global demand

+ 8 % of the global demand
+15 % of the global demand

Energy Outlook 2021; Total Energies; pp 1–42.
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Natural gas panoramaIntroduction

LNG

Flaring

Direct on site use 
(75%)

Zichittella, G.; Pérez-Ramírez, J. Status and Prospects of the Decentralised Valorisation of Natural Gas into Energy and Energy Carriers. Chemical Society Reviews 2021, 50 (5), 2984–3012.

Çaǧlayan, M.; et al. Illuminating the Intrinsic Effect of Water Co-Feeding on Methane Dehydroaromatization: A Comprehensive Study. ACS Catal. 2021, 11671–11684. 

Combustion 
(raw methane)
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Methane catalytic upgradingIntroduction

Antoine Beuque’s Thesis (2022)



Methane dehydroaromatization under non oxydative conditions
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3 Majors hurdles

Energy vector

o Thermodynamic conversion ~12.5% at 700 °C

o Rapid catalyst deactivation : ~ 10 hours
Highly selective towards benzene ~70%

Products valorization
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o Selectivity in Naphthalene : 30 %
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Optimisation of the Balance Mo/H+

Impact of the balance of the two functions
(metallic and acidic) 

Cumulative 
yield

(Benzene)
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Beuque, A et al. How Does the Balance of Metal and Acid Functions on the Benchmark Mo/ZSM-5 Catalyst Drive the Methane Dehydroaromatization Reaction? Catalysis Today 2022. 

Catalyst optimizationHow to increase the benzene yield?
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MoO3

Molybdenum remain at 
the external surface

Cumulative 
yield
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Beuque, A et al. How Does the Balance of Metal and Acid Functions on the Benchmark Mo/ZSM-5 Catalyst Drive the Methane Dehydroaromatization Reaction? Catalysis Today 2022. 

Catalyst optimizationHow to increase the benzene yield?
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Reversible deactivation by pore blocking Irreversible deactivation by zeolite amorphization

Cumulative 
yield

(Benzene)

0 molC gcat
-1

Selection of the well-balanced catalyst (2.7-MoHZ-15) 

2.7-MoHZ-15

Beuque, A et al. How Does the Balance of Metal and Acid Functions on the Benchmark Mo/ZSM-5 Catalyst Drive the Methane Dehydroaromatization Reaction? Catalysis Today 2022. 

Catalyst optimization
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How to increase the benzene yield?

Benzene yield 
is still too low
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Catalyst structuring

Dense packed beds ➔Randomly packing

• d = 1–20 mm 
• Fixed bed / 

Moving bed
• Lower porosity 

due to particle 
consolidation

• Carrefully
monitoring the 
packing 

Granules Pellets Extrudates

• d = 1–50 mm
l = 3–30 mm 

• Fixed bed
• High surface to 

volume flexibility
• Additionnal

porosity
• Tune pressure 

drop 

• d = 3–15 mm
l = 3–15 mm 

• Fixed bed
• Tune pressure 

drop
• Carrefully

monitoring the 
packing

• Disruption of the 
pore system

Honeycomb
monoliths

Foam 3D printing 
monoliths

• 2D channels
• Low pressure 

drop
• Efficient heat

removal
• Washcoat

needed
• High variety of 

geometry

• 3D channels, 
interconnected 
pore system

• Efficient heat
removal

• Low mechanical 
strength

• Ultrahigh variety
of geometry

• 3D channels, 
interconnected 
pore system

• Efficient heat
removal

• Washcoat
needed

Cellular structures ➔ Standalone reactors

• Difficulty for proper heat management and 
acceptable pressure drop 

Regeneration issue 

• Low weight of catalyst per unit 
volume 
➔ short contact time 

Reaction issue 

Rosseau, L. R. S et al. (2022) Front. Chem. Eng. 4. DOI:10.3389/fceng.2022.834547

How to increase the benzene yield?
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Influence of design 
(TRL 4) 

DIW process

⌀ = 10mm

h= 15mm

Z3D-M

Cell shape
Square

l= 0.5mm

No influence of the design at the lab
scale

➔ possibility to preserve the 
catalytic properties during the scale-

up 
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How to increase the benzene yield?

Biogas flow
(CH4)

Benzene
CH4 + H2

N2

Pre-Heater

Condenser

Benzene

CH4 (recycled)

Fixed-bed

Reactors (4)

Valve

(Purge)

Membrane

H2

CH4 + H2

CH4 

CH4 + H2

Compressor

Oven

Selector valve

Air

N2

Recirculation

Furnace

A multi-tubular fixed bed
reactor

+
Methane recycling loop 

combined with a hydrogen 
separation membrane

Process optimisation 

Benzene yield X 6

Partial hydrogen separation
(80%)

Naphthalene

Selectivity into Naphthalene: 30%

Deactivation rate after 10h:  >70% 11
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Why the deactivation mitigation is limited ?

Inhibition of the active sites by the reaction products

Benzene adsorption Naphthalene adsorption 

Eads (C10H8) = -0.65eV

CO-hydrogen/benzene adsorption 

Presence of hydrogen reduces strength of the benzene adsorption on active sites  

CO-hydrogen/napthalene adsorption 

Eads (C10H8 + H2) = +0.68eVEads (C6H6 + H2) = + 0.16eV

Eads (C6H6) = -0.78eV

Beuque, A et al. How Do the Products in Methane Dehydroaromatization Impact the Distinct Stages of the Reaction? Applied Catalysis B: Environmental 2022, 309, 121274 

12
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How to valorize naphthalene?

7.2 wt% (H)

Catalytic
hydrogenation

Catalytic
dehydrogenation

Decaline

Naphthalene

Naphthalene a possible Liquid Organic Hydrogen Carrier (LOHC-)

11
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Tandem catalysis for biogas to Liquid Organic Hydrogen Carrier

Biogas flow
(CH4)

Benzene
Naphthalene

CH4 + H2

Pre-Heater

Condenser

Benzene

CH4 (recycled)

Fixed-bed

Reactors (4)

Valve

(Purge)

Decaline + LOHC+ 

Oven

Selector valve

Recirculation
Furnace

Naphthalene + CH4 + H2

LOHC-

Heat transfert

Reactive
separation

= 
Catalytic

Hydrogenation

For total hydrogen
consumption

150°C

Condenser
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Tandem catalysis for biogas to Liquid Organic Hydrogen Carrier

Industrial
scale

R
e
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r
c
h
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a
l

Development of stable 
bifunctional MDA catalysts

Development of stable zeolite-
based hydrogenation catalysts

N. Kosinov, E.J. Hensen Advanced Materials, 2020, DOI: (10.1002/adma.202002565) 

Conclusion
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Importance of the regeneration step

5

3wt. %Mo/H-ZSM-5 Spent catalyst
~ 8%wt. of 

carbon

6 9+⇌

Reaction

Extremely endothermic
𝛥𝐻r

0 = 532 𝑘𝐽 𝑚𝑜𝑙−1

Thermodynamically limited
~ 12% at 700 °C 

Deactivation few hours

Long contact time 

Regeneration

Highly exothermic
𝛥𝐻r

0 = −283 𝑘𝐽 𝑚𝑜𝑙−1

Short contact time 

+

Risk of thermal runaway

→



Management of the regeneration step

0.5 cm
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Quartz thermowell 

7 thermocouples
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3.0cm

3.5g of spent
catalyst Np 
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Air 140 mL min-1

Coke combustion ➔ oxygen comsommation
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Reach 700°C in the reactor

Key point to manage heat temperatureIrreversible deactivation

Formation of extraframework species Al2(MoO4)3 

➔ collapse of the internal zeolite structure 
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+ 200 °C 
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