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Outline

❑ Methodology and aims

o Gas-liquid contact membrane system for CO2 removal

❑ Modelling of the membrane-based gas absorption process under isothermal operation

o 2-D formulation in the fiber; 1-D in the shell-side; coupling using BCs

o Mass transfer resistances in the shell-side and the membrane including wetting

o Reaction rate term in the shell-side

❑ Results

o CO2 removal for various flowrates

o Membrane wetting estimation

o Use of shell-side mass transfer correlation and parametric analysis

o Dynamic response of the system

❑ Conclusions
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Methodology and aims

Biogas
(60:40 - CH4:CO2)

Bio-CH4

AMBIENT CONDITIONS

3M Liqui-Cel 1.7x5.5 MM at CERTH

MEMBRANE-BASED GAS ABSORPTION SolventSolvent + CO2

✓ 7400 polypropylene hollow fibers
(OD/ID: 300/220 μm)

✓ Pore size: 40 nm

✓ Specific surface area: 3600 m2/m3

✓ Active surface area: 0.58m2

✓ Parallel flow

Conventional 
amine 

technologies

Membrane-
based CO2

capture

Certain advantages of membrane-based gas 
absorption compared to conventional equipment
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Modelling

CO2 absorption using gas-liquid contact membrane process

1 For the shell-side correlation, ks,o, see Costello et al. J. 
Membrane Sci. 80 (1993) 1-11.

2 For the reaction rate and enhancement factors see Hikita
et al. Chem. Eng. J. 13 (1977) 7-12 (valid for 0.174-0.719M); 
Danckwerts, Gas-liquid reactions, 1970

▪ Resistance-in-series1 concept to calculate Kext:

▪ Overall reaction rate2 between CO2-DEA

▪ Wetting calculation by matching experimental
data and computational output for various gas
and liquid flowrates using 0.25M DEA

▪ SPSE gPROMS ModelBuilder 7.0 is used

−𝒖𝒊𝒏𝒕
𝛛𝑪𝒔,𝒛,𝒊
𝛛𝒛

= −𝒏𝒊 ∙ 𝑹𝒂𝒕𝒆𝒊 𝒛 + 𝒂𝒗 ∙ 𝑴𝒆𝒎𝒃𝒓𝒂𝒏𝒆𝑭𝒍𝒖𝒙𝒊 𝒛

𝐶𝑂2 + 2𝑅2𝑁𝐻 → 𝑅2𝑁𝐶𝑂𝑂
− + 𝑅2𝑁𝐻2

+

𝑅𝑎𝑡𝑒 = 𝑘𝑅 ∙ 𝐶𝑂2 ∙ 𝐷𝐸𝐴 2

▪ Binary mixture CO2-CH4 ~(40-60%) in the fibers 

When no shell-side equations are necessary analytical solutions exist see: 
G. Pantoleontos, I.M. Anagnostara, M. Syrigou, A.G. Konstandopoulos. Solutions of 
the mass continuity equation in hollow fibers for fully developed flow with some 
notes on the Lévêque correlation, Carbon Capt. Sci. Technol. 2 (2022) 100027

𝑆ℎ𝑠 = 0.53 − 0.58𝜑 ∙ 𝑅𝑒𝑠
0.53 ∙ 𝑆𝑐𝑠
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Results – CO2 removal for various flowrates

No.
T 

(°C)

QGin

(lph)

QGout

(lph)

Ql

(lph)

CO2,in

(%)

CO2,out

(%)

CO2 removal 

(%)

1 28.5 102.4 67.4 16.8 41.2 9.35 85.08

2 28.5 102.4 62.7 18.6 41.2 2.90 95.70

3 28.5 102.4 61.0 21.0 41.2 0.62 99.11

4 24.5 116.5 82.2 16.8 41.2 15.20 73.99

5 25.5 115.7 75.0 18.3 41.6 8.15 87.31

6 25.5 115.7 71.5 21.0 41.6 3.56 94.72

7 24.5 131.7 96.3 16.8 41.7 18.70 67.28

8 25.5 130.8 88.9 18.3 41.9 12.30 80.09

9 25.5 130.8 84.5 21.0 41.9 7.38 88.65

▪ The gas feed contains 41.2-41.9% CO2, 58.8-58.1% CH4 (fiber-side)
▪ Aqueous solution of DEA 0.25M in the shell side
▪ Gas flowrates 102.44– 130.8 LPH and the liquid flowrates 16.8–21 LPH
▪ Experiments are carried out at 24.5-28.5 °C and 1 Atm

▪ For the 3M Mini Module 1.7x5.5 high CO2 removal even at 
high gas-to-liquid flowrate ratio (6.25 adj. GtL for No. 3 →
99%) and at very small DEA concentrations

▪ CH4 diffusion into the liquid flow is negligible in all 
experimental sets, according to the experimental 
measurements and mass balance calculations 
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𝑪𝑶𝟐𝑹𝒆𝒎𝒐𝒗𝒂𝒍 % = 𝒃𝟏 ∙ 𝐦 ∗ +𝒃𝟐 ∙ 𝐳 ∗+෍

𝒋=𝟑

𝟔

𝒃𝒋 ∙ 𝐳 ∗ 𝒋−𝟑

𝒛 ∗= 𝑳 Τ𝑫 𝟒𝒖𝑹𝒇
𝟐 = ൗ𝟏 𝑮𝒛

𝐦 ∗= 𝒎 Τ𝑸𝑮 𝑸𝑳

Coefficients Values Stand. error Coefficients Values Stand. error

b1 -8.37x100 1.24x100 b4 -3.27x104 8.32x103

b2 6.36x105 1.62x105 b5 3.26x101 8.32x100

b3 -3.63x106 9.22x105 b6 -1.94x10-2 4.97x10-3
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Results – Membrane wetting estimation

❖ Reaction rate by Hikita et al. Chem. Eng. J. 13 (1977) 7-12
❖ Shell-side mass transfer correlation by Costello et al. J. 

Membrane Sci. 80 (1993) 1-11.

▪ Wetting calculation by matching experimental 
data and computational output for various gas 
and liquid flowrates using 0.25M DEA

▪ Application of the Hikita (reaction rate) – Costello 
(shell-side correlation) 

▪ The calculated wetting values are concentrated 
close to each other for the same liquid flowrate 
regardless of the gas mixture flowrate (z*)

▪ Increasing liquid flowrate leads to smaller wetting 
values relative to gas-filled portion the membrane 
resistance (see also Pantoleontos et al.1)

𝒛 ∗= 𝑳 Τ𝑫 𝟒𝒖𝑹𝒇
𝟐

1 Pantoleontos, G., Theodoridis, T., Mavroudi, M., Kikkinides, 
E.S., Koutsonikolas, D., Kaldis, S.P., Pagana, A.E., Can. J. Chem. 
Eng. 95 (2017) 1352-1363.
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Results – Parametric analysis

▪ The Kext,avg is hardly altered for different ks,o values
→ the absorption performance mainly depends on
the reaction rate
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𝑅𝑎𝑡𝑒 = 𝑘𝑅 ∙ 𝐶𝑂2 ∙ 𝐷𝐸𝐴 2

𝐻𝑎 2 =
1

𝑘𝑠,𝑜
2 𝑘𝑅 ∙ 𝐷𝐶𝑂2,𝐷𝐸𝐴 ∙ 𝐶𝑠,𝑧,𝐷𝐸𝐴

2

𝒌𝒔 = 𝑬 ∙ 𝒌𝒔,𝒐 ≈ 𝑪𝒔,𝒛,𝑫𝑬𝑨 ∙ 𝒌𝑹 ∙ 𝑫𝑪𝑶𝟐,𝑫𝑬𝑨When 𝑬 ≈ 𝑯𝒂

▪ The design of experiments can be guided by a single pair of
z*-m* regardless of the shell-side mass transfer correlation
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Results – Dynamic response

❖ Reaction rate by Hikita et al. Chem. Eng. J. 13 (1977) 7-12
❖ Shell-side mass transfer correlation by Costello et al. J. 

Membrane Sci. 80 (1993) 1-11.

▪ Variation of the biogas composition

▪ Dynamic response of the module performance for a 
step-change in biogas composition (from yin= 0.412 
to 0.45)

▪ Retain the same liquid flowrate → switch from a 
matching-case (wetting estimation) to a fixed-
wetting case (simulation)

▪ A new steady state is reached after almost two 
minutes

▪ Fast transients will be also the case for a larger unit 
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𝒛 ∗= 𝑳 Τ𝑫 𝟒𝒖𝑹𝒇
𝟐

𝐦 ∗= 𝒎 Τ𝑸𝑮 𝑸𝑳
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Conclusions

❑ Gas-liquid contact membrane system is capable of removing >95% CO2 from a biogas mixture and

completely recovering bio-CH4 using DEA 0.25M at GtL flowrate ratios ~6

❑ Mass transfer model of sufficient fidelity (2-D formulation in the fiber; 1-D in the shell-side)

including all relevant mass transfer resistances (membrane wetting; shell-side correlations;

enhancement factors)

❑ Membrane wetting estimation by matching experimental data with the computational output

o Two wetting “patterns”: the wetting depends mainly on the liquid flowrate; the relative

contribution of the liquid-filled part of the membrane resistance decreases for higher

flowrates

❑ Parametric analysis of the shell-side mass transfer correlation reveals that it affects the wetting

computational estimation

❑ The apparent shell-side mass transfer coefficient mainly depends on the reactive conditions

❑ Dynamic analysis reveals that the gas-liquid contact membrane process after a composition step-

change reaches a new steady state after two minutes
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Development of a bifunctional hierarchically structured zeolite based
nano-catalyst using 3D technology for direct conversion of methane
into aromatic hydrocarbons via methane dehydroaromatization
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