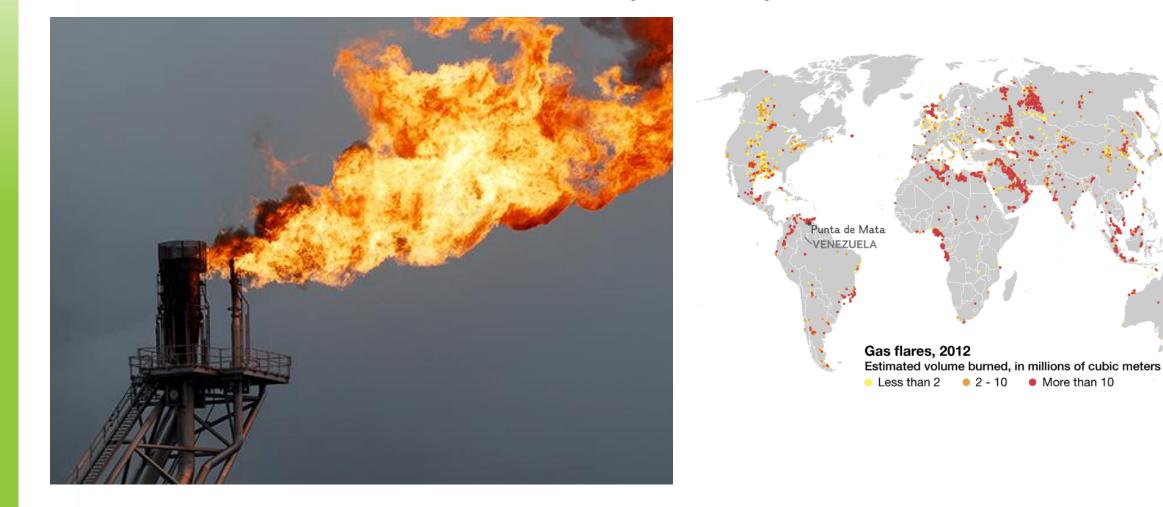


Funded by the European Union

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nos. 814548, 814671 & 814557



C123 Methane oxidative conversion and hydroformylation to propylene Project overview

Richard H. Heyn (SINTEF), Project coordinator Joris Thybaut (Univ. Gent), Scientific coordinator

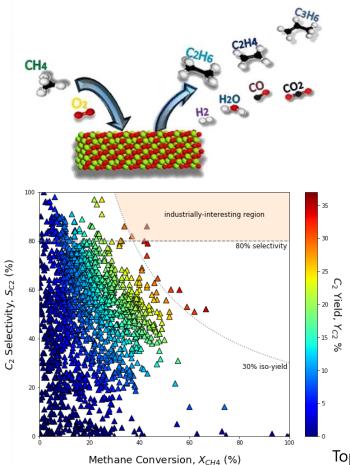
Today's reality

A waste is a terrible thing to mind

- Converting CH_4 to CO_2 is better for the environment!
- Simply a waste of natural resources
- Why?
 - Cheaper and easier to simply burn CH₄ than convert it to something useful
 - Location, location, location!
 - "Stranded gas"

The C123 solution

• 2 stage process


Oxidative Conversion of Methane (OCoM): $CH_4 + O_2 \rightarrow H_2C = CH_2 + CO (+ H_2)$

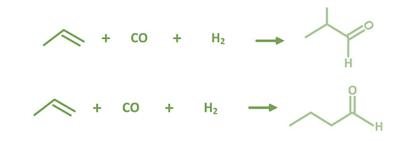
Hydroformylation (HF): $H_2C=CH_2 + CO + H_2 \rightarrow propanal \rightarrow other C_3 products$

• Easier transportation of liquid C₃ products from remote locations

Oxidative Conversion of Methane (OCoM) Like Oxidative Coupling of Methane, but different

- Oxidative Coupling of Methane (OCM)
 - decades of research
 - entire periodic table investigated
 - awaiting successful commercialization
- Oxidative Conversion of Methane
 - Focus on maximizing both C₂ and CO as equimolar products
 - Better atom efficiency
 - Incorporation of CO₂ into products

Top left: Noon et al. J. Nat. Gas Sci. Eng. 18 (2014) 406; Bottom left: Pirro et al. Reac. Chem. Eng. 5 (2020) 584


OCoM results

- Most suitable OCoM catalyst
- Kinetic model for the OCoM reaction stage
- Optimal reaction conditions for C₂H₄ production
- 10:25 Alejandro Romero Limones (U Gent)

Hydroformylation

- One of the world's largest <u>homogeneously</u> catalysed industrial processes
- Couples an alkene and syngas (CO + H_2) into an aldehyde
 - High yield and selectivities
- Primarily catalysed by organometallic Rh complexes
 - Co also used
 - Separation issues
 - Complex ligand systems to control selectivity
 - Can get both linear and branched aldehydes

Hydroformylation results

- Three new heterogeneous HF catalysts
 - PolyPhos
 - Metal-organic frameworks (MOFs)
- Successful testing in gas-phase hydroformylation of ethene
- 11:40 Alvaro Amieiro (Johnson-Matthey)

C123 Scenarios

- 5 scenarios based on 3 gas sources and 2 process sizes
 - Biogas (Germany)
 - Marginal gas (Russia)
 - 15 % of proven gas reserves
 - Not economically viable with state-of-the-art technology
 - Unfavorable crude characteristics
 - High gas and low oil reserves
 - Associated gas (USA)
 - 25 % of proven natural gas reserves
 - Natural gas found in association with oil in an oil reservoir
 - Modular route
 - 10-30 kton/yr product propanal or propanol
 - Add-on route
 - 200-300 kton/yr product propene

C123 Scenarios: TEA/LCA

• Process design, TEA and LCA of all 5 scenarios

- Scenario A: Biogas, modular (Germany)
- Scenario B1: Marginal gas, modular (Russia)
- Scenario B2: Associated gas, modular (USA)
- Scenario C1: Marginal gas, add-on (Azerbaijan)
- Scenario C2: Associated gas, add-on (Iraq)
- Scenario B2 is considered the most promising industrial application
- 15:20 Mohamed Mahmoud (PDC) and Jordy Motte (U. Gent)

Continued relevance of the C123 project

- Given the current conflict in Ukrania and the weaponisation and increased price of natural gas supplies, how relevant is the C123 project?
- Natural gas prices will affect primarily its large production and consumption
- Natural gas prices do not change the current situation of natural gas flaring in remote locations, thus C123 is still relevant.

Conclusions

- C123 offers a technical solution for the conversion of stranded natural gas reserves to transportable C_3 chemicals
 - OCoM catalysts and process for conversion of $CH_4/CO_2/O_2$ to an equimolar mixture of C_2 hydrocarbons and CO
 - Synthesis of heterogenous catalysts for gas-phase hydroformylation
 - Processes and techno-economic and life cycle assessments of 5 different scenarios for the conversion of CH₄ to C₃ products
- 6.5 M€ (EU contribution) project
- 01.01.2019 30.06.2023

THANK YOU

Contacts:

rhh@sintef.no