

Funded by the European Union

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nos. 814548, 814671 & 814557

Conceptual process design, techno-economic and environmental assessment of C123 modular processes

Mohamed Mahmoud & Jordy Motte

Introduction: C123-project

Scenario A : Biogas _ Modular scale

- Large quantities of CO2 present in the fresh Feed.
- 99 % of CO2 is captured
- X-CH4 : 35% per pass
- PBC is used to a convert ethane to H2 and ethylene
- Water gas shift reactor adjust the C2H4:CO to 1:1
- Process water removed is sufficient to supply water demand for electrolysis.

Scenario B1: Marginal gas _ Modular scale

- Considerable quantities of
 Ethane is present in the feed.
- Marginal gas is fed directly to
 PBC → ethane cracking
- The OCOM reactor feed is the recycle stream leaving the CO2 wash unit
- X-CH4 : 35% per pass
- PBC is used to a convert ethane to H2 and ethylene
- Water gas shift reactor adjust the C2H4:CO to 1:1
- Process water removed is sufficient to supply water demand for electrolysis.

Scenario B2: Associated gas _ Modular scale

- Large quantities of **Ethane** is present in the feed.
- Marginal gas is fed directly to
 PBC → ethane cracking
- Excess H2 is selectively oxidized.
- Partial oxidation of C1 & C2+ is used to adjust the ratio of C2H4:CO: H2 to 1:1:1
- The OCOM reactor feed is the recycle stream leaving the partial oxidation reactor.
- X-CH4 : 35% per pass
- PBC is used to a convert ethane to H2 and ethylene
- Process water removed is sufficient to supply water demand for electrolysis.
- No additional H2 is needed for Hydroformylation.

Modular Scale Plant

• What is Modular plant?

- Smaller, standardized, and pre-fabricated modules that can be easily assembled, transported, and interconnected at the site of installation.
- Why Modular scale Plant?
 - Efficient use of resources → Utilizing smaller feedstocks.
 - Difficulty to build onsite → very remote locations such as scenarios B1 & B2
 - Economy of scale is a challenge → resolved by implementing number-up approach.
 - Flexibility → Easier to modify and expand the plant as needed.
 - Reduced construction time and cost → pre-fabrication off-site reduce construction time and plant site is significantly reduced, leading cost savings.
 - Safety → minimizes on-site work, reducing the potential for accidents and injuries.
 - Transport → Pre-fabricated modules are containerized which makes it easier transport.
 - Easier maintenance and repair → exchange of damaged equipment with new ones

https://www.prweb.com/releases/2013/5/prweb10705036.htm

Modular scale plant : Design considerations

- Production scale 10 -30 kt/yr.
- Modules should fit in container →limited to the following maximum dimensions:
 - Length: 12.2 m
 - Height: 2.39 m
 - Width: 2.35
 - Maximum gross weight : 30.5 tonne
- Maximize the selectivity and conversions of the reactors
- Minimize the intermediate separation steps.

- Cost-effectiveness → optimizing the process design for maximum efficiency and productivity.
- Portability → designed to be easily transported and installed on site.
- Integration → designed to be integrated with other process equipment and systems to ensure smooth operation and efficient production

Preliminary Techno-Economic Assessment

September 2021

US Dollar

- Costing tool : PROSYN[®] costing
- Basic data
 - Cost date
 - Currency
 - Location details

Scenario A : Germany Location factor : 0.81 (vs. USGC) Scenario B : US Midwest Location factor : 1.02 (vs. USGC)

- General
 - Utilities ISBL
 - Natural gas
 - Utilities OSBL
 - Cooling water
 - MP steam (and LPS return)
 - Power generation
 - Electrolysis + PSA
 - Waste water treatment
 - Hydrogen Production

- Assumptions and considerations
 - Space velocities / residence times from literature were used to size OCoM section reactors, Hydroformylation reactor and propanal hydrogenation reactor.
 - Catalysts and catalysts regenerations were not considered in this study.

Process economics estimation approach

			Scenario	Scenario
			А	B1/B2
Capital cost	Capital cost calculation		X 10	000 \$
•	Heat exchangers		\$ 653	\$ 619
	Process vessels		\$ 3,156	\$ 4,976
	Pumps and comperssors		\$ 3,155	\$ 3,222
	Drives		\$ 244	\$ 261
	Furnaces		\$ 582	\$ 679
	Quoted equipment		\$ 12	\$ 14
	Unlisted equipment	15%	\$ 1,170	\$ 1,466
	Total bare module cost		\$ 8,972	\$ 11,238
		_		
	Contingency	15%	\$ 1,346	\$ 1,686
	Fee	3%	\$ 269	\$ 337
	Total module capital cost	\$10,588	\$ 13,261	
	Land cost	3%	\$ 262	\$ 296
	site development	5%	\$ 437	\$ 493
	auxilary buildings	4%	\$ 350	\$ 395
	off-site facilities	25%	\$ 2,185	\$ 4,935
	total grass roots capital	\$13,821 \$		\$ 19,380
	startup expenses	2%	\$ 276	\$ 388
	working capital	15%	\$ 2,073	\$ 2,907
	total capital investment		\$16,171	\$ 22,675

VALORISING METHANE RESOURCE

Scenario A: Utilities, raw materials, co-products and wastes

Raw materials costs break down

bio gas O2 -PSA Water MEA make-up

Total utilities costs break down _ Scenario A

Scenario B1/B2: Utilities, raw materials, co-products and wastes

ng	expenses		Sc	enario A		Scenario B1/B2
Manu	facturing expenses (annual)		\$/y	r	\$/y	۲r
Direct	Raw materials operating labour supervisory and clerical labour utilities maintenance and repairs operating supplies laboratory charges	15% of operating labour 6% of grass roots capital 10% of maintenance 15% of operating labour	\$ \$ \$ \$ \$ \$ \$ \$	9,825,628 1,394,640 209,196 2,050,613 829,288 82,929 209,196	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,278,431 1,394,640 209,196 1,418,643 1,162,803 232,561 209,196
	patents and royalties	3% of manufacturing expenses excl. financing	\$	650,516	\$	377,051
SUM						
Indirect						
	Overhead, packaging, and storage	50% of labour, supervision, maintenance	\$ ¢	1,216,562	\$ ¢	1,659,983
	insurance	1% of grass roots capital	Ś	138 215	Ś	193,800
SUM	insurance		Ŷ	100,210	Ŧ	200,000
General e	xpenses					
	Administrative costs distributing and selling Research and development	25% of overhead 10% of manufacturing expenses excl. financing 5% of manufacturing expenses excl. financing	\$ \$ \$	304,141 2,168,386 1.084,193	\$ \$ \$	414,996 1,256,836 628,418
SUM	·····		*	_,,	Ċ	,
Depreciat	tion					
SLIM	Depreciation	10% of grass roots capital	\$	1,382,147	\$	1,938,005
Total			Ś	21.683.864	Ś	12,568,358
Plant cap	acity (N-propanol produced)	kton/ve	ar	13	-	11
Manufac	turing product cost price	\$/ti	on \$	1,613	\$	1,096

Manufactur

EU-project Horizon 2020 GA No. 814557 C123 Methane oxidative conversion and hydroformylation to propylene

C123

Summary of results

	Case 1a	Case 2a	Case 1b	Case 2b		
	Scenario A : 10bar + PSA	Scenario A: 10bar + PSA	Scenario B1/B2 : 10bar + PSA	Scenario B1/B2 : 10bar + PSA		
Production capacity (kt/yr)	13	30	12	30		
Total capital investment (M\$)	16.2	28.3	22.7	39.6		
Manufacturing expenses (M\$)	21.7	44.1	12.1	21.9		
Product cost (k\$/tonne)	1.61	1.47	1.00	0.73		
Market price (k\$/tonne)		1.	.68			

Notes

• Case 2a has the lowest manufacturing product cost prices due to the effect of economy of scale.

• Heat integration is not fully considered.

• Economy of scale is very prominent.

• Catalyst and catalyst regeneration costs were not considered.

Life Cycle analysis

Jordy Motte

Methodology

Resource efficiency analysis

Methodology: Environmental performance assessment

C123

Data collection: - Aspen simulations for C123 process

- Literature and Ecoinvent database for supporting processes

(e.g., oxygen production, electricity production)

For more details: <u>https://doi.org/10.1021/acs.iecr.2c00808</u>

Methodology: Resource efficiency analysis

At life cycle level:

At process and plant level:

CEENE method (Dewulf et al., 2007)

$$CDP = \frac{Ex_{product} + Ex_{by-products}}{CEENE}$$

CDP = cumulative degree of perfection CEENE = cumulative exergy extraction from the natural environment Exergy calculations, Exergy = useful part of energy

$$\eta_r = \frac{\sum Ex_{useful outputs}}{\sum Ex_{inputs}}$$

For more details: https://doi.org/10.1016/j.jclepro.2022.134843

Preliminary results environmental performance assessment

Main contributors:

Only for scenario A:

- Biogas production & upgrading

For all scenarios:

- Oxygen production for oxidative conversion of methane (OCoM)
- Electricity production (for compression, hydrogen production)
- Direct CO₂ emission in CO₂ reduction stage (except scenario BG)
- Heat production for preheating (e.g., OCoM)

Comparsion with 1-propanol not fair at this moment due to different technology readiness level!

Preliminary results environmental performance assessment

C123

VALORISING METHANE RES

Preliminary results resource efficiency analysis

Scenario A:

All C123 production steps have a high exergetic efficiency

Low exergetic efficiency for biogas production

Low methane conversion into propanol per pass due to high exergy content of recycling stream

Preliminary results resource efficiency analysis

Scenario B2:

Higher CDP than scenario A

However, scenario A uses more renewable resources and can be part of a circular economy (open loop)

VALORISING METHANE RESOURCES

Preliminary conclusions

- Modular scale plants can utilize widely available and wasted resources
 - Easier to design and build → Cost reductions and easier to modify and transport
 - Economy of scale is the main challenge → resolved by number-up approach

- Environmental assessment:
 - The lowest impact on climate change → Scenario B2
 - The highest exergetic efficiency on life cycle level → Scenario B2

THANK YOU

Contacts:

Mahmoud@process-design-center.com

Jordy.motte@ugent,be