

Funded by the European Union

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nos. 814548, 814671 & 814557

Ethylene Hydroformylation Catalysis

Alvaro Amieiro Fonseca

Hydroformylation

Hydroformylation is the process by which an olefin reacts with syngas to form an aldehyde.

Also commonly known as the "Oxo" process, hydroformylation **is the first step in the production of oxo alcohols** with the intermediate aldehyde converted to an alcohol by hydrogenation.

Hydroformylation

Johnson Matthey and Dow LP OxoSM technology is the world's leading process to alcohols from olefins.

The offer to the licensees is a combination of superior catalyst and a simplified flowsheet, which results in lean design , low investment cost, and high feedstock efficiency in a plant that is environmentally compliant and reliable.

Platinum Metals Rev., 2007, 51, (4), 164 doi: 10.1595/147106707X238211

EU-project Horizon 2020 GA No. 814557 C123 Methane oxidative conversion and hydroformylation to propylene

C123 HF catalyst challenge

Coupling a robust heterogeneous hydroformylation process with oxidative coupling of methane could disrupt the current oxo process technology.

- The **hydroformylation** will require to operate in **gas phase** and operate at lower pressure that usual.
- The traditional Rh active complexes anchored with a covalent bond into traditional carriers, polymers and metal organic framework structures.

Anchored catalyst Strategies

Metal Organic Frameworks	 Phosphine modified NU1000 and MOF808. Rhodium complex inserted. 		
Polymers	 Polyphos phoshine modified Synthesis metallated with Rh Complexes. Amine and phosphine Functionalised resin beads. 		
Silica Functionalization	 Organosilane Chemistry. Anchor Rh complex over amine or Phosphine group. 		
	Johnson Matthey Technol. Rev., 2021, 65, (2), 31 doi: 10.1595/205651321X16051060155762		

Polymer beads were synthesized with the help of mechanical stirrer

Using Mowiol 40-88 via suspension technique

C123

EU-project Horizon 2020 GA No. 814557 C123 Methane oxidative conversion and hydroformylation to propylene ¹⁶

Synthesis of novel MOF based heterogeneous catalysts

- NU1000 synthesis (MOF-808)
- Functionalizing the MOF
- Formulating the MOF
- Testing Heterogenous catalysts

Formulation of functionalized NU-1000

- TRL 5 heterogenous testing requires 500-1.5mm particles
- Previously extruded UTSA-16 by mixing with PVA

Steps PVA-method:

- 1. PVA solution
- 2. Mixing PVA with MOF
- 3. Extruding/milling/sifting
- 4. Characterization

Pelletising method:

- 1. Tablets pressed by applying pressure
- 2. Milling/sifting
- 3. Characterization

JM Catalyst Strategy: JM Johnson Matthey Inspiring science, enhancing life

Material family A:

Amine functionalized materials are reacted with Rh catalysts

Material family B:

0 ^H

Functionalised TPhP materials react with Rh salts and phosphines

EU-project Horizon 2020

Energy [keV

EDS - SEM

Catalyst Testing:

Catalyst	M-complex	
NU-1000-P-Rh-PVA	Rh(acac)(CO) ₂ Rh(H)(CO)(PPh ₃) ₃	
RhH@Polyphos-1 beads (400- 600 um)	Rh(H)(CO)(PPh ₃) ₃ Rh(acac)(CO) ₂	cnrs
MOF-808-P-RhH-PVA	(CO)HRh(PPh3)3	

Sample code	Catalyst	Initial conversion [%] TOS = 200 min	Recheck conversion TOS = 2150 min	Propanal selectivity* [%]	Stability	Synthesis reproducibility (first estimate)
Mf-C123-90-21	NU-1000-P- RhH-PVA	57%	75%	95-97%	+++	-
Mf-C123-134-21	NU-1000-P- PVA-Rh(acac)	78%	61%	98%	+	+++
PSM-B-033-10	Rh(CO)2(acac) Polyphos	77%	47%	80-85%	-	++

Results and Synthesis reproducibility

CO ethylene ratio analysis

Positive effect of increased CO content in the feed

Pressure effect

As expected positive effect of increased pressure in the conversion

Stability

Summary

- Several interesting candidates for gas phase HF showing good performance
 - Rh-Polyphos exhibited stability issues
 - Rh functionalised NU-1000 is robust but economically unviable
- Rh(acac)(CO)₂ shows overall best performance and is reproducible
- Several attempts of making a Co functionalised NU-1000 not active for HF
- Positive effect of increased CO content in the feed
- Positive effect when pressure is increased as expected
- Small ammounts of O₂ in the feed rapidly deactivates the catalyst
- No negative effect observed with 20 % CO₂ in the feed

Thank you

Acknowledges:

- Johnson Matthey
 - Stephen Poulston and Stephen Bennet

SINTEF

 Richard Heyn (PI) Mortem Frøseth (NU1000 synthesis) Silje Fosse Håkonsen (Catalyst screening).

• CNRS

 Lyon Jerome Canivet (PI) Partha Samantha (Polyphos and MOF 808 Synthesis)

Axel One

• Didier Bonet (PI) Thomas Michon (Shaping and Formulation)

Contacts:

Alvaro Amieiro Fonseca:– C123 WP3 leaderamieia@matthey.com

Richard Heyn– C123 Project coordinator Richard.H.Heyn@sintef.no