

Funded by the European Union

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nos. 814548, 814671 & 814557

Catalysts and processes for the conversion of methane to CO and ethylene

Alejandro Romero Limones

Outline

- C123 overview
- Catalyst candidates for OCoM
- Kinetic modelling
- OCoM process
- Conclusion and future work

Oxidative Conversion of Methane

Catalyst performance tests

EU-project Horizon 2020 GA No. 814557 C123 Methane oxidative conversion and hydroformylation to propylene

Best performance

From OCM to OCoM: Impact of CH₄/O₂

Acronym	Reaction steps
OCM	$CH_4 + \frac{1}{4}O_2 \rightarrow \frac{1}{2}C_2H_6 + \frac{1}{2}H_2O$
ТОМ	$\mathrm{CH}_4 + 2\mathrm{O}_2 \rightarrow \mathrm{CO}_2 + 2\mathrm{H}_2\mathrm{O}$
POM	$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$
ODH	$C_2H_6 + \frac{1}{2}O_2 \rightarrow C_2H_4 + H_2O$
POEt	$C_2H_4 + 2O_2 \rightarrow 2CO + 2H_2O$

5 oxidation reactions are proposed based on experimental measurements

From OCM to OCoM: Impact of temperature

Acronym	Reaction steps
OCM	$CH_4 + \frac{1}{4}O_2 \rightarrow \frac{1}{2}C_2H_6 + \frac{1}{2}H_2O$
TOM	$\mathrm{CH}_4 + \mathrm{2O}_2 \rightarrow \mathrm{CO}_2 + \mathrm{2H}_2\mathrm{O}$
POM	$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$
ODH	$C_2H_6 + \frac{1}{2}O_2 \rightarrow C_2H_4 + H_2O$
POEt	$C_2H_4 + 2O_2 \rightarrow 2CO + 2H_2O$
TDE	$C_2H_6 \rightarrow C_2H_4 + H_2$

The thermal dehydrogenation is proposed based on the increase in S_{C2H4} while S_{C2} remains the same

From OCM to OCoM: Impact of CO₂

Acronym	Reaction steps
OCM	$CH_4 + \frac{1}{4}O_2 \rightarrow \frac{1}{2}C_2H_6 + \frac{1}{2}H_2O$
TOM	$\mathrm{CH}_4 + \mathrm{2O}_2 \rightarrow \mathrm{CO}_2 + \mathrm{2H}_2\mathrm{O}$
POM	$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$
ODH	$C_2H_6 + \frac{1}{2}O_2 \rightarrow C_2H_4 + H_2O$
POEt	$\mathrm{C_2H_4} + \mathrm{2O_2} \rightarrow \mathrm{2CO} + \mathrm{2H_2O}$
TDE	$C_2H_6 \rightarrow C_2H_4 + H_2$

 CO_2 has no effect on methane conversion, but decreases the selectivity towards the other compounds

$$S_{i} = \frac{C_{i}(F_{i} - F_{i,0})}{\sum_{j=1}^{n} C_{j}(F_{j}) - F_{CO_{2},0}}$$

Kinetic model description

Acronym	Reaction steps
OCM	$CH_4 + \frac{1}{4}O_2 \rightarrow \frac{1}{2}C_2H_6 + \frac{1}{2}H_2O$
TOM	$\mathrm{CH}_4 + \mathrm{2O}_2 \rightarrow \mathrm{CO}_2 + \mathrm{2H}_2\mathrm{O}$
POM	$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$
ODH	$C_2H_6 + \frac{1}{2}O_2 \rightarrow C_2H_4 + H_2O$
POEt	$C_2H_4 + 2O_2 \rightarrow 2CO + 2H_2O$
TDE	$C_2H_6 \rightarrow C_2H_4 + H_2$
WGSR	$CO + H_2O \rightarrow CO_2 + H_2$

The 7 reaction steps that explain experimental observations do not allow description of experimental selectivities and methane conversion

Adding Steam Reforming of Methane into the kinetic model

Acronym	Reaction steps
OCM	$CH_4 + \frac{1}{4}O_2 \rightarrow \frac{1}{2}C_2H_6 + \frac{1}{2}H_2O$
TOM	$\mathrm{CH}_4 + \mathrm{2O}_2 \rightarrow \mathrm{CO}_2 + \mathrm{2H}_2\mathrm{O}$
POM	$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$
ODH	$C_2H_6 + \frac{1}{2}O_2 \rightarrow C_2H_4 + H_2O$
POEt	$C_2H_4 + 2O_2 \rightarrow 2CO + 2H_2O$
TDE	$C_2H_6 \rightarrow C_2H_4 + H_2$
WGSR	$CO + H_2O \rightarrow CO_2 + H_2$
SRM	$CH_4 + H_2O \rightarrow CO + 3H_2$

Addition of Steam Reforming of Methane allows quantitative description of selectivities and methane conversion

Parity plot

Acronym	Reaction steps
OCM	$CH_4 + \frac{1}{4}O_2 \rightarrow \frac{1}{2}C_2H_6 + \frac{1}{2}H_2O$
TOM	$\mathrm{CH}_4 + \mathrm{2O}_2 \rightarrow \mathrm{CO}_2 + \mathrm{2H}_2\mathrm{O}$
POM	$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$
ODH	$C_2H_6 + \frac{1}{2}O_2 \rightarrow C_2H_4 + H_2O$
POEt	$C_2H_4 + 2O_2 \rightarrow 2CO + 2H_2O$
TDE	$C_2H_6 \rightarrow C_2H_4 + H_2$
WGSR	$\rm CO + H_2O \rightarrow \rm CO_2 + H_2$
SRM	$CH_4 + H_2O \rightarrow CO + 3H_2$

OCoM – Real scenarios (Natural gas and Biogas)

Natural gas/biogas

Conclusions

- The MnNaW/SiO₂ catalyst has the highest ethylene yield, being the most suitable for OCoM.
- A simple 8 steps kinetic model for OCM was developed and incorporated into the OCoM process simulations.
- Using natural gas for OCoM results in a maximal ethylene yield of 15% with a C_2H_4/CO ratio of 1.5 at temperature of 850 °C, total pressure of 1 bar, W/F_{CH4} of 2.5 kg mol⁻¹ s⁻¹, and CH₄/O₂ of 4.

Outlook

- In order to improve the simple kinetic model, more experimental data focusing on the role of the water should be acquired for further parameter re-estimation.
- Scaling-up of the catalyst (pellets synthetization)
- Incorporating of kinetic model within a packed bed reactor model in order to assess the OCoM process performance.
- Scaling-up of the process to pilot-plant and industrial-scale

THANK YOU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 837733.

Contacts:

Alejandro.RomeroLimones@UGent.be

Joris Thybaut – WP leader Joris.Thybaut@UGent.be

Richard Heyn – Project coordinator Richard.H.Heyn@sintef.no