

Funded by the European Union

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nos. 814548, 814671 & 814557

TECHNO-ECONOMIC ASSESSMENT OF BIZEOLCAT NEW PROPANE AND BUTANE DEHYDROGENATION AND PROPANE AROMATIZATION

Vittoria Cosentino 16 March 2023

Outline

- Introduction
- Process technologies overview
 - Benchmark
 - Innovative processes
- > Techno-economic assessment
 - Cost of Production (COP)
- Analysis of main parameters on COP
 - Feed cost
 - Catalyst cost
 - Membrane cost and life
- Conclusion

(1) A. Ricca, F. Montella, G. Iaquaniello, E. Palo, A. Salladini and V.Palma, "Membrane assisted propane dehydrogenation: Experimental investigation and mathematical modelling of catalytic reactions," Catalysis Today, no. Elsevier, 2017. (2) Z. Nawaz, "Light alkane dehydrogenation to light olefin technologies: a comprehensive review," Rev. Chem. Eng., vol. 31, no. 5, no. 5 vol. 31 2015.

Process technologies overview

Benchmark

Process technologies overview Innovative processes PDH **BDH** PAR BIZEOLCAT process • BIZEOLCAT process BIZEOLCAT process • BIZEOLCAT catalyst Commercial catalyst • BIZEOLCAT catalyst Pt(0.75)Sn/ 18-20 wt% CrOx/Al2O3, GaiBu/meso-40 1-2 wt% Na or K Li(0.45)Al2O3 No membranes • Double skin Pd-alloyed • Double skin Pd-alloyed membranes membranes H2 H2 To burners 1.3 butadiene To burners Benzene H2 1.3 Light Memt Fresh C3H8 compound butadiene Pre-feeding Light/heavy BTX Reac Fresh C3H8 Pre-heating Reactors MP recycle separation separation separation compound separation ➡ Toluene sect separation section separation section To burners C3H8 recycle Fresh NMP Xylene C3H8 recycle **BiZeolCat** NEXTCHEM Confidential Information

Techno-economic assessment

Cost of Production (COP) 1/2

- VOC calculated on feed basis: propane cost of 430 Euro/ton PDH and PAR; butane cost of 440 Euro/ton for BDH
- Depreciation: 10% Fixed Capital Investment
- O&M plant: 3% Fixed Capital Investment

Techno-economic assessment

Analysis of main parameters on COP

Feed cost

Cost of production versus feed cost for a) PDH, b) BDH and c) PAR

Analysis of main parameters on COP

Catalyst cost

Cost of production versus catalyst cost for a) PDH at propane cost at 430 Euro/ton, b) BDH at butane cost of 440 Euro/ton and c) PAR at propane cost at 430 Euro/ton

Analysis of main parameters on COP

Membrane cost and life

Cost of production versus membranes cost for a) PDH at propane cost of 430 Euro/ton and 3years of membrane-life, and b) BDH at butane cost of 440 Euro/ton and 3years of membrane-life Influence of membranes life for a) PDH at propane cost of 430 Euro/ton and b) BDH at butane cost of 440 Euro/ton

Conclusions

- The lower is the price of feedstock and catalyst and the lower is the gain derived from deployment of BIZEOLCAT technology.
- The more is reduced the cost of the membrane and the more is increased the lifetime, the higher is the gain showed by BIZEOLCAT innovative technology.
- PDH is favourably influenced using innovative catalytic membrane reactor since a reduction in COP of 14% can be achieved.
- BDH is favourably influenced using innovative catalytic membrane reactors since a reduction in COP of 10% can be achieved.
- PAR is negatively influenced using innovative catalytic membrane reactors. Without membranes and with BIZEOLCAT catalyst, a reduction in COP of 50% can be achieved.

THANK YOU FOR THE ATTENTION!

Contacts:

Vittoria Cosentino v.cosentino@nextchem.it

